Dynamics and energetics of solute permeation through the Plasmodium falciparum aquaglyceroporin.

نویسندگان

  • Camilo Aponte-Santamaría
  • Jochen S Hub
  • Bert L de Groot
چکیده

The aquaglyceroporin from Plasmodium falciparum (PfAQP) is a potential drug target for the treatment of malaria. It efficiently conducts water and other small solutes, and is proposed to intervene in several crucial physiological processes during the parasitic life cycle. Despite the wealth of experimental data available, a dynamical and energetic description at the single-molecule level of the solute permeation through PfAQP has been lacking so far. Here we address this question by using equilibrium and umbrella sampling molecular dynamics simulations. We computed the water osmotic permeability coefficient, the pore geometry and the potential of mean force for the permeation of water, glycerol and urea. Our simulations show that the PfAQP, the human aquaporin 1 (hAQP1) and the Escherichia coli glycerol facilitator (GlpF) have nearly identical water permeabilities. The Arg196 residue at the ar/R region was found to play a crucial role regulating the permeation of water, glycerol and urea. The computed free energy barriers at the ar/R selectivity filter corroborate that PfAQP conducts glycerol at higher rates than urea, and suggest that PfAQP is a more efficient glycerol and urea channel than GlpF. Our results are consistent with a solute permeation mechanism for PfAQP which is similar to the one established for other members of the aquaglyceroporin family. In this mechanism, hydrophobic regions near the NPA motifs are the main water rate limiting barriers, and the replacement of water-arg196 interactions and solute-matching in the hydrophobic pocket at the ar/R region are the main determinants underlying selectivity for the permeation of solutes like glycerol and urea.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Glycerol inhibits water permeation through Plasmodium falciparum aquaglyceroporin.

Plasmodium falciparum aquaglyceroporin (PfAQP) is a multifunctional membrane protein in the plasma membrane of P. falciparum, the parasite that causes the most severe form of malaria. The current literature has established the science of PfAQP's structure, functions, and hydrogen-bonding interactions but left unanswered the following fundamental question: does glycerol modulate water permeation...

متن کامل

Molecular dissection of water and glycerol permeability of the aquaglyceroporin from Plasmodium falciparum by mutational analysis.

The selectivity of aquaporins for water and solutes is determined by pore diameter. Paradoxically, the wider pores of glycerol facilitators restrict water passage by an unknown mechanism. Earlier we characterized an aquaglyceroporin from Plasmodium falciparum with high permeability for both glycerol and water. We use point mutations to demonstrate that amino acids directly lining the pore are n...

متن کامل

Identification of transmembrane region and orientation of aquaglyceroporin of Plasmodium falciparum.

Aquaglyceroporin is a subclass of aquaporin water channels. This protein is also a focused potential drug target for falciparum malaria. However, the knowledge about the structure of this protein is limited. In this communication, the author performed a study to determine the transmembrane region and orientation of aquaglyceroporin of Plasmodium falciparum . According to this study, six transme...

متن کامل

The role of alanine 163 in solute permeability of Leishmania major aquaglyceroporin LmAQP1.

Leishmania major aquaglyceroporin LmAQP1 allows adventitious passage of antimonite, an activated form of the drug Pentostam, which is used as the first line treatment for leishmaniasis. The extracellular C-loop of an aquaglyceroporin confers substrate specificity. Alteration of Glu125 to serine in the Plasmodium falciparum aquaglyceroporin PfAQP has been shown to selectively affect water but no...

متن کامل

Clinical Pharmacology of the Antimalarial Chloroquine in Children and Their Mothers

Plasmodium falciparum, Plasmodium vivax, Plasmodium ovale, Plasmodium malariae, and Plasmodium knowlesi are the parasites that infect humans. Plasmodium falciparum and Plasmodium vivax cause most of the malarial infections worldwide. Plasmodium vivax, Plasmodium ovale, Plasmodium malariae, and Plasmodium knowlesi are susceptible to chloroquine. Chloroquine was the world's most widely used antim...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Physical chemistry chemical physics : PCCP

دوره 12 35  شماره 

صفحات  -

تاریخ انتشار 2010